Positivity Preserving Gradient Approximation with Linear Finite Elements
نویسندگان
چکیده
منابع مشابه
Positivity preserving finite element approximation
We consider finite element operators defined on “rough” functions in a bounded polyhedron Ω in RN . Insisting on preserving positivity in the approximations, we discover an intriguing and basic difference between approximating functions which vanish on the boundary of Ω and approximating general functions which do not. We give impossibility results for approximation of general functions to more...
متن کاملAn efficient nonstandard numerical method with positivity preserving property
Classical explicit finite difference schemes are unsuitable for the solution of the famous Black-Scholes partial differential equation, since they impose severe restrictions on the time step. Furthermore, they may produce spurious oscillations in the solution. We propose a new scheme that is free of spurious oscillations and guarantees the positivity of the solution for arbitrary stepsizes. The...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملInvariant Domains Preserving Ale Approximation of Hyperbolic Systems with Continuous Finite Elements ∗
A conservative invariant domain preserving Arbitrary Lagrangian Eulerian method for solving nonlinear hyperbolic systems is introduced. The method is explicit in time, works with continuous finite elements and is first-order accurate in space. One originality of the present work is that the artificial viscosity is unambiguously defined irrespective of the mesh geometry/anisotropy and does not d...
متن کاملInvariant Domains Preserving Arbitrary Lagrangian Eulerian Approximation of Hyperbolic Systems with Continuous Finite Elements
A conservative invariant domain preserving arbitrary Lagrangian Eulerian method for solving nonlinear hyperbolic systems is introduced. The method is explicit in time, works with continuous finite elements, and is first-order accurate in space. One original element of the present work is that the artificial viscosity is unambiguously defined irrespective of the mesh geometry/anisotropy and does...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Methods in Applied Mathematics
سال: 2018
ISSN: 1609-9389,1609-4840
DOI: 10.1515/cmam-2018-0017